和其他的数学家解决难题一样,在面对一个复杂度极高的问题时,他最先开始要做的,同样是查找收集阅读各种与之相关的论文和文献资料。
不过相对比以前需要自己动手或者说让学生助理帮忙动手,耗费掉大量的时间来搜集这些资料来说,现在他收集这些资料的速度,就要快太多了。
只需要锁定一个细致的范围和分类,将需要的论文方向和文献资料领域告诉AI学术助手小灵,它就能够在极短的时间内搞定这些。
虽然说小灵搜集到的论文资料还需要徐川亲自再过一遍,但相对比以前自己去海量的论文中筛选来说,这已经能够极大的节省他的前期准备工作和时间了。
花费了两天的时间,将小灵收集到的论文资料过了一遍后,坐在书桌前,徐川从抽屉中抽出来一叠稿纸,平铺在红木书桌上。
目光落在捏着的笔尖上,思忖了好一会后,他在稿纸上写下了第一个数学工作。
【(+ k)u =0,在 Dc中, u = u^s + u^i, lim|x|→∞|x|^(n1)/2·(u^s/|x| iku^s).】
这是为赫姆霍兹方程,也是数学界常用于解决电磁场散射难题的工具之一。
通俗的来说,如果一个问题所涉及的是偏微分方程(PDE)的反问题。
那么这类问题一般有以下形式:给定一个 PDE以及方程解 u的一些信息(基于实际应用考虑,这些信息应较容易通过测量得到,比如边界值或无穷远处的渐近行为等等。
再以此反演出 PDE中的一些未知信息,如系数、定义域,甚至模型本身。
而就反散射问题而言,一般都会假设波是不可穿透散射体的,即散射波场仅存在于散射体外面。
但很显然,就这种带有‘局限性’的计算方法并不是徐川需要的。
对于电磁轨道炮来说,内部的磁场反射、衍生等各种问题可比这个复杂多了。
书房中,柔和的灯光照亮着稿纸,一边思索着,徐川一边在纸上写,一边自言自语道:
“.在散射体的边界D上给出合适的边界条件.如果散射体是声软的,可以考虑u|D = 0;而当散射体是声硬的(sound-hard),我们有
uν|D =0。”
“但在此之上,还需要考虑所谓的阻抗边界条件,即(u/v+λu)·|D = 0,λ∈ C, Imλ> 0”
“则散射场在无穷ν远处有如下渐近表示为:u^s(x)= e^ik|x|/|x^(n1)/2{u∞(x)+ O(1/|x|).”
看着笔下的稿纸,徐川眼眸中流露出了一丝喜意。
以他的经验来说,在解决一个复杂的问题之前,找到这个复杂问题的入口是最有效最快捷的方法。
而只要找到了这个口子,那么至少他就能够看到接下来的路该怎么走了。
在电磁轨道炮的磁场数据难题上,他已经顺利的找到那根线头。
对于徐川来说,全身心的投入数学上的理论研究,还是一年前的事情了。
弱黎曼猜想证明后,他更多的工作是在主持航天领域和物理领域的研究。
不过对于他来说,沉浸式的进入数学研究工作,那熟悉的感觉却并不生疏。
尤其是在自己感兴趣的领域,每一份额外知识的获取,都像是一份多巴胺一样,带给他满足和快乐。
尤其是当他的注意力全都集中在那洁白稿纸上的黑色数学符号上时,仿佛整个世界都消失了,只剩下了眼前的阿拉伯数字与古希腊符号。
笔在纸上流畅地滑过,留下一个个美妙的字符,仿佛每一笔都是一首诗,每一个字都是一颗璀璨的星辰,点亮了整个世界。
夜深,静谧的书房中亮着一盏温柔的灯,窗外的紫金山仿佛在沉睡一般,偶尔响起一些窸窸窣窣的声音,就如同梦中的情话。
盯着书桌上的稿纸,徐川眼神中带着明亮的光,嘴里轻轻的念叨着:
“.借助于拉普拉斯算子的谱理论可以得到第一个唯一性
第八百三十八章:顺利的电磁研究工作