飞速中文网 > 其他小说 > 我的老师是学霸 > 第二百八十五章 陈氏定理

第二百八十五章 陈氏定理

    第二百八十五章

    陈氏定理可以应用在等差素数猜想的研究当中吗?

    历代的诸多数学家已经给了这个问题一个否定的答案。

    在进行等差素数猜想的研究时,康斯坦丁同样是有些想当然。

    思维的惯性让康斯坦丁从头至尾,都没有考虑过使用陈氏定理尝试一番。

    但现在,康斯坦丁意识到,自己或许犯了一个无比巨大的错误。

    陈氏定理,或许真的是打开等差素数猜想那一半大门的钥匙。

    …………

    “等差素数猜想的内容,是指存在任意长度的素数等差数列。”

    “这里需要注意的一点是,是任意长度的等差数列,而并非是无限长度的等差数列。”

    “任意长度和无限长度这个两个名词还是有很大区别的。”

    “就拿等差素数猜想举一个最简单的例子。”

    说到这,顾律握着马克笔,在身后的黑板上写下几个符号。

    “首先,我们假设一个素数等差数列的首项为n,公差为d,那么该等差数列的第n+1项是什么?”

    “是n+nd。”顾律自问自答,接着把该公式圈起来,“而n+nd必定为首项n的倍数,很显然,这样的话,n+nd并非是一个素数。简单来说,该等差数列就不是一个全部由素数构成的素数等差数列!”

    “因此!”顾律敲敲黑板,划重点,“针对等差素数猜想,我们只能说存在任意长长度的素数等差数列,而不能说存在无限长度的等差数列。”

    这些内容,代数几何领域的数学家们早就清楚。

    顾律之所以再说一遍,是为了给会议室内那群其他领域的数学家稍微普及一点相关知识,避免待会儿讲起来,使他们处于一脸懵逼的状态。


    “那么,关于等差素数猜想,我们的目标就很明确了。那就是证明由素数构成的等差数列可以任意长,并且有任意多组。”

    “这里,我们引入了一个k值的概念,这个k值,便是指一个完全由素数组成的等差数列中,存在的素数个数。”

    “而当k为偶数时,等差素数猜想的成立问题,在几天前,已经由康斯坦丁教授讨论并证明过,在这里我就不再过多的进行赘述。”

    说到这的时候,顾律瞥了一眼抱着胳膊,神色阴沉的康斯坦丁一眼,然后自顾自的继续开口说道,“接下来,我直接阐述当k为奇数情况下,等差素数猜想的证明!”

    顾律的证明正式开始。

    台下的众人一个个正襟危坐,竖起耳朵,笔记本摆在手边,随时准备记录,生怕漏掉任何一个细节。

    和昨天一样,顾律不借助任何电子设备的辅助,直接在黑板上一步步推导演绎等差素数猜想的证明过程。

    关于等差素数猜想,顾律是在昨天下午才刚刚证明成功的。

    但每一个细节,每一道步骤,早就烙印在顾律的脑海里。

    顾律现在需要做的,就是将其在众人面前呈现。

    会议室内,数台摄影机同时对准顾律,拍摄下顾律证明的全过程。

    对数学界来说,这是一份注定的宝贵影像资料。

    …………

    “……我们首先命p(1,2)为适合下列条件的的素数p的个数,x——p=p1或x——p=p1p2。其中,p1,p2,p都是素数。”

    “接下来,我们用x表示一充分大的偶数,命x=Π(p≈ap;gt;2)p-1/p-2Π(p≈ap;gt;2)(1-1/(p-1)2)。对于任意给定的偶数h,以及充分大的xp,用xh(1,2)表示满足下面条件的素数p的个数:p≤x,p+h=p1或p+h=p2p。在这里,p1,p2,p同样代表素数。”

    “……之后,我们便会得到两个定理,分别是:

    定理一:【(1,2)及px(1,2)≥067xx/(logx)2】

    定理二:对于任意偶数h,都存在无限多个素数p,使得p+h的素因子的个数不超过2个以及xh(1,2)≥067xx/(logx)2】”

    顾律讲了已经有五分钟的时



第二百八十五章 陈氏定理  
鸿尘逍遥推荐:  万能数据  综艺至尊  
随机推荐:  穿呀!主神  赋光阴以长空  我真的控制不住自己  魔本为尊  
‘加入书签,方便阅读’

热门推荐

搜"我的老师是学霸"
360搜"我的老师是学霸"
语言选择